

Bio-graphene nanocomposite polymeric membranes for the mitigation of biofouling

Christina Alatzoglou¹, Michaela Patila¹, Maria G. Trachioti², Mamas I. Prodromidis², Haralambos Stamatis^{1*}

UNIVERSITY ¹ Biotechnology Laboratory, Department of Biological Applications and Technologies, University **OF IOANNINA** of Ioannina, 45110 Ioannina, Greece

²Laboratory of Analytical Chemistry, University of Ioannina, 45110 Ioannina, Greece *Corresponding author: E-mail: <u>hstamati@uoi.gr</u>, Tel +30 26510 07116

graphite to pristine graphene using biological agents, such

as chitosan provides biographene (BG) with functional groups that make the material suitable support for enzyme immobilization.

• Incorporation of nanobiocatalysts with antimicrobial activity on the membrane surface can mitigate biofouling and improve the properties of the membranes.

OBJECTIVE

RESULTS

Figure 1. SEM image of PES membrane

Table 1. Catalytic activity of free and immobilized lysozyme

Immobilization Activity (Units) Sample **yield (%)** 48.0 ± 0.8 Free lysozyme

SEM image presents the pores on the surface of the membrane. The mean pore size is ~110nm.

75

concentration of antimicrobial agents (µg/mL)

Figure 2. Antimicrobial activity of free lysozyme,

bG+chit and immobilized lysozyme on E.coli

100

400

In this work, polyethersulfone (PES) membranes were modified by combining nanomaterials and enzymes with antimicrobial activity.

ACKNOWLEDGEMENTS

We acknowledge the support for this work provided by the project "Advanced Nanostructured Materials for Sustainable Growth: Energy Production/Storage, Energy Saving Green and Environmental Remediation" (TAEDR-0535821), which was implemented under the action "Flagship actions in interdisciplinary scientific fields with a special focus on the productive fabric" (ID 16618), Greece 2.0—National Recovery and Resilience Fund and funded by the European Union NextGenerationEU.

Immobilized lysozyme	46.3 ± 2.6	24.5 ± 1.1	Antimic

CONCLUSION

- ✓ Synthesis of green nanomaterial, biographene
- ✓ Production of hybrid intercalated biographene nanostructures
- ✓ Synthesis of a novel nanocomposite polymeric membranes for ultrafiltration processes with antimicrobial activity.

10

25

50